BERNARD ANTHONY WOOD

PUBLICATIONS

THESIS
1975 ‘Analysis of sexual dimorphism in primates.’ (pp. 1-296)
Submitted to satisfy the requirements for the award of the degree of Doctor of Philosophy in The University of London.

BOOKS
   Intended as an introduction to Human Evolution.
2. 1978 ‘Human evolution.’
   One of the monograph series: ‘Outline Studies in Biology.’
3. 1984 ‘Food acquisition and processing in primates.’
4. 1986 ‘Major topics in primate and human evolution.’
   This monograph reassesses the cranial evidence for early hominin evolution and proposes a revised taxonomy for early hominins.
8. 2006 ‘Anthropology.’


1. 1968 ‘Functional affinities of the Olduvai hominid 8 talus.’

2. 1969 ‘Hominoid tali from East Africa.’

3. 1971 ‘An unusual case of atropine poisoning.’

4. 1972 ‘Exogastric leiomyomata.’

5. 1973 ‘Locomotor affinities of hominoid from Kenya.’

6. ‘New evidence of the genus Homo from East Rudolf, Kenya: II.’

7. 1974 ‘Early hominid ulna from the Omo basin, Ethiopia.’

8. ‘New evidence of the genus Homo from East Rudolf, Kenya: IV.’

9. ‘A hominid mandible from East Rudolf, Kenya.’

10. ‘Olduvai Bed I post-cranial fossils: a reassessment.’

11. ‘Evidence on the locomotor pattern of Homo from early Pleistocene of Kenya.’


14. ‘The nature and basis of sexual dimorphism in the primate skeleton.’

15. ‘Some aspects of the evolution of early hominid sexual dimorphism: comments.’

16. ‘New hominids from East Turkana, Kenya.’

17. 1977 ‘Allometry and sexual dimorphism in the primate innominate bone.’
18. 1978  ‘Allometry and hominid studies.’


20.  ‘Classification and phylogeny of East African hominids.’


21.  ‘Relative growth in primates.’


22. 1979  ‘Relationship between body size and long bone lengths in Pan and Gorilla.’


23.  ‘An analysis of tooth and body size relationships in five primate taxa.’


24.  ‘The ‘Neanderthals’ of the College of Surgeons.’


25.  ‘Models for assessing relative canine size in fossil hominids.’


26. 1980  ‘Does allometry explain the differences between ‘gracile’ and ‘robust’ australopithecines?’


27.  ‘Venous drainage of the hind limb in the monkey (*Macaca fascicularis*).’


29.  ‘Metrical analysis of the basicranium of extant hominoids and *Australopithecus.*’


30.  ‘Tooth size and shape and their relevance to studies of hominid evolution.’


31.  ‘Developing pongid dentition and its use for ageing individual crania in comparative cross-sectional growth studies.’


32.  ‘Palaeoanthropological studies at Chesowanja.’

33. 1981 ‘Comparative basicranial morphology of Plio-Pleistocene hominids: background studies and fossil evidence.’

34. ‘Anal and perianal disorders: anatomy.’

35. ‘Early archaeological sites, hominid remains and traces of fire from Chesowanja, Kenya.’

36. 1982 ‘Basicranial anatomy of Plio-Pleistocene hominids from East and South Africa.’

37. 1983 ‘Analysis of the dental morphology of Plio-Pleistocene hominids I. Mandibular molars: crown area measurements and morphological traits.’

38. ‘The allometry of relative cusp size in hominoid mandibular molars.’

39. ‘Analysis of the dental morphology of Plio-Pleistocene hominids II. Mandibular molars - study of cusp areas, fissure pattern and cross sectional shape of the crown.’

40. 1984 ‘Interpreting the dental peculiarities of the ‘robust’ australopithecines.’

41. ‘Regression lines, size and allometry.’

42. ‘The origin of Homo erectus.’

43. ‘Phylogeny, neoteny and growth of the cranial base in hominoids.’

44. 1985 ‘Sexual dimorphism in the hominid fossil record.’
45. 1985 ‘Early Homo in Kenya and its systematic relationships.’

46. ‘Anatomy of the anal sphincters and pelvic floor.’

47. ‘A reappraisal of variation in hominid mandibular corpus dimensions.’

48. ‘A review of the definition, distribution and relationships of Australopithecus africanus.’

49. ‘Un nouvel hominide a Baringo, Kenya.’

50. 1986 ‘Australopithecus: grade or clade?’

51. ‘The nature, origin and fate of Homo erectus.’

52. ‘Preliminary observations on the BK 8518 mandible from Baringo, Kenya.’

53. ‘Evidence for dietary specialization in the “robust” australopithecines.’

54. ‘Variations in enamel thickness and structure in East African hominids.’

55. ‘Were the "robust" australopithecines dietary specialists?’

56. ‘The primate pelvis: allometry or sexual dimorphism?’

57. ‘Patterns of allometry in modern human femora.’

58. ‘Patterns of basicranial anatomy in hominid evolution: an exercise in systematic and phylogenetic analysis.’

59. ‘Phylogenetic analysis of early hominids: comment.’
60. 1987 ‘Pattern and rates of enamel growth in the molar teeth of early hominids.’

61. ‘Analysis of the dental morphology of Plio-Pleistocene hominids III. Mandibular premolar crowns.’

62. ‘Early hominid phylogeny.’

63. ‘The nature and affinities of the ‘robust’ australopithecines: a review.’

64. 1988 ‘Analysis of the dental morphology of Plio-Pleistocene hominids IV. Mandibular postcanine root morphology.’

65. ‘Cranial morphology of early hominids I. Facial region.’

66. ‘Analysis of the dental morphology of Plio-Pleistocene hominids V. Maxillary postcanine tooth morphology.’

67. ‘A probabilistic approach to the problem of sexual dimorphism in *Homo habilis*: a comparison of KNM-ER 1470 and KNM-ER 1813.’

68. ‘Are ‘robust’ australopithecines a monophyletic group?’

69. 1989 ‘Comparative anatomy of the forelimb veins of primates.’

70. ‘Valves in superficial limb veins of human and non-human primates.’

71. ‘Hominid relationships: a cladistic perspective.’

72. ‘Relatives, Ancestors, Molecules and Sex.’

73. ‘Hominid diversity in the Plio-Pleistocene.’

74. 1990 ‘Position and orientation of the foramen magnum in higher primates.’

75. 1991 ‘Intraspecific variation and sexual dimorphism in cranial and dental variables among higher primates, and their bearing on the hominid fossil record.’
76. 1991 ‘Variation in the Lufeng dental remains.’

77. ‘The superficial venous system of the primate forelimb: a case study in character phylogeny.’

78. ‘A palaeontological model for determining the limits of early hominid taxonomic variability.’


80. ‘Anatomy of the anal sphincters and pelvic floor.’

81. ‘Early hominid species and speciation.’

82. 1993 ‘Early Homo: how many species?’

83. ‘Taxonomic and geographic diversity in "robust" australopithecines and other African Plio-Pleistocene mammals.’

84. ‘Comparative palaeontological context for the evolution of the early hominid masticatory system.’

85. ‘Patterns of hominid evolution in Africa.’

86. 1994 ‘Hominid paleobiology: recent achievements and challenges’.

87. ‘Taxonomy and evolutionary relationships of Homo erectus.’

88. ‘Early hominid labyrinthine morphology and its possible implications for the origin of human bipedal locomotion.’

89. ‘Further analysis of mandibular molar crown and cusp areas in Pliocene and early Pleistocene hominids.’
90. 1994 ‘Paranthropus boisei - an example of evolutionary stasis?’

91. ‘Cranial variables as predictors of hominine body mass.’

92. 1995 ‘The role of time and timing in hominid dental evolution.’

93. ‘Influence of global climate change and regional uplift on large mammal evolution in East and southern Africa.’

94. ‘Evolution of the early hominin masticatory system: mechanisms, events and triggers.’

95. ‘Evolution of modern human dental ontogeny revisited.’

96. 1996 ‘Hominid palaeobiology - have studies of comparative development come of age?’

97. ‘Homoplasly and early Homo: an analysis of the evolutionary relationships of H. habilis sensu stricto and H. rudolfensis.’

98. ‘Evidence of a link between human semicircular canal size and bipedal behaviour.’

99. ‘Biology and body size in human evolution: statistical inference misapplied.’

100. ‘Homo habilis: variability and its significance.’

101. ‘Assessing the pelvis of AL 288-1.’

102. ‘Human evolution.’
Wood, B.A. Bioessays, 18 (No.12): 945-954.

103. ‘Origin and evolution of the genus Homo.’
104. 1997  ‘Grades and the evolutionary history of early African hominids.’


106.  ‘Laser scanning and palaeoanthropology: an example from Olduvai Gorge, Tanzania.’


108. 1999  ‘Evolution of the gibbon subgenera inferred from cytochrome b DNA sequence data.’

109. 1999  ‘Is Homo defined by culture?’

110.  ‘Homo rudolfensis Alexeev, 1986 - fact or phantom?’

111. 1999  ‘Plio-Pleistocene hominins from the Baringo Region, Kenya.’

112. 1999  ‘The Human Genus.’


114. 1999  ‘Morphological and taxonomic affinities of the Olduvai ulna (OH 36).’

115. 1999  ‘Early hominin biogeography.’


117. 2000  ‘Assessing exact randomization methods for determining the taxonomic significance of variability in the hominin fossil record.’
118. 2000  ‘How reliable are human phylogenetic hypotheses?’

119.  ‘Investigating human evolutionary history.’

120.  ‘Human evolution: taxonomy and paleobiology.’

121.  ‘Soft-tissue characters in higher primate phylogenetics.’

122.  ‘The history of the genus Homo.’

123.  ‘Systematics of Humankind.’
Cela-Conde, C.J., Aguirre, E., Ayala, F.J., Tobias, P.V., Turbon, D., Aiello, L.C.,
Collard, M., Goodman, M., Groves, C.P., Clark Howell, F., Schwartz, J.H., Strait, D.S.,
(also published in 2003: Naturaleza Y Diversidad Humana Eds. R.G. Lombardo,
J.M. Contreras and J.L.V. Cortés. pp. 1-5. Centro de Estudios Filosóficos, Políticos y
 Sociales Vicente Lombardo Toledano, México).

124.  ‘Old and new paradigms in the study of human evolution.’
Wood, B. Rivista de Antropologia, 78: 17-34.

125.  2001  ‘Evolving interpretations of Homo.’
University Press, Florence.

126.  ‘How reliable are current estimates of fossil catarrhine phylogeny? An assessment using
extant great apes and Old World monkeys.’
Collard, M. and Wood B. In: Hominid Evolution and Climate Change in Europe,
Phylogeny of the Neogene Hominoid Primates of Eurasia. Vol. 2. Eds. L. de Bonis, G.D.

127.  ‘Testing the taxonomic integrity of Paranthropus boisei sensu stricto.’

128.  ‘Comparative context of Plio-Pleistocene hominin brain evolution.’

129.  ‘Craniodental variation in Paranthropus boisei: a developmental and functional
perspective.’

130.  ‘Homoplasy and the early hominid masticatory system: inferences from analyses of
extant hominoids and papionins.’
131. 2001 ‘The meaning of Homo.’

132. 2002 ‘Soft tissue anatomy of the extant hominoids: a review and phylogenetic analysis.’

133. ‘Early hominin limb proportions.’

134. ‘Older than the Oldowan? Rethinking the emergence of hominin tool use.’

135. ‘Stature-at-death of KNM-WT 15000.’

136. 2004 ‘Patterns of resource use in early Homo and Paranthropus.’

137. ‘Human origins: life at the top of the tree.’

138. ‘Interoobserver error involved in independent attempts to measure cusp base areas of Pan M’s.’

139. ‘Paranthropus paleobiology.’

140. 2005 ‘A tale of two taxa.’

141. ‘Early evolution of the foot.’

142. ‘Recent evolution of the human foot.’

143. 2006 ‘The evolution of modern human life history – a paleontological perspective’
144. 2006 ‘Palaeoecology of Kolpochoerus heseloni (= K. limnetes): a multiproxy approach.’

145. ‘Whose diet? An introduction to the hominin fossil record.’

146. ‘Hominin homoiology: An assessment of the impact of phenotypic plasticity on phylogenetic analyses of humans and their fossil relatives.’

147. 2007 ‘The hominin fossil record and the emergence of the modern human central nervous system.’

148. ‘Masticatory biomechanics and its relevance to early hominin phylogeny: An examination of palatal thickness using finite element analysis.’

149. ‘Defining the genus Homo.’

150. ‘The evolution of Zinjanthropus boisei.’

151. ‘Trends in postcanine occlusal morphology within the hominin clade: the case of Paranthropus.’

152. ‘Dental development.’

153. ‘Paranthropus boisei: fifty years of fossil evidence and analysis.’

154. ‘Sir Wilfrid Le Gros Clark: The making of a paleoanthropologist.’

155. 2008 ‘Dental trait expression at the enamel-dentine junction of lower molars in extant and fossil hominoids.’

156. ‘The hominin fossil record: taxa, grades and clades.’

158.  ‘Cranial base evolution within the hominin clade.’

159.  ‘Inferences regarding the diet of extinct hominins: structural and functional trends in
dental and mandibular morphology within the hominin clade’

160.  ‘Dental enamel as a dietary indicator in mammals’


162.  ‘Enamel-dentine junction (EDJ) morphology distinguishes the lower molars of
Australopithecus africanus and Paranthropus robustus.’

163.  'From fish to modern humans – comparative anatomy, homologies and evolution of the
head and neck musculature.'

164.  ‘Hominid mandibular corpus shape variation and its utility for recognizing species
diversity within fossil Homo.’

165.  'Which is the more 'evolved' in modern humans, the hand or the foot?'
       Wood, B. Foot and Ankle Surgery, 14: 142-144.

166.  2009  ‘Protostylid expression at the enamel-dentine junction and enamel surface of mandibular
molars of Paranthropus robustus and Australopithecus africanus.’

167.  ‘The feeding biomechanics and dietary ecology of Australopithecus africanus.’
       Strait, D.S., Weber, G.W., Neubauer, S., Chalk, J., Richmond, B.G., Lucas, P.W.,
       Spencer M.A., Schrein, C., Dechow, P C., Ross, C.F., Grosse, I.R., Wright, B.W.,
       Proceedings of the National Academy of Sciences, 106: 2124-2129.

168.  ‘Evolution of M1 crown size and cusp proportions in the genus Homo.’

169.  'From fish to modern humans – comparative anatomy, homologies and evolution of the
pectoral and forelimb musculature.'

170.  ‘Discrimination of extant Pan species and subspecies using the enamel-dentine junction
morphology of lower molars.’

171.  ‘Where does the genus Homo begin, and how would we know?’
172. 2009 ‘On the origin, homologies and evolution of primate facial muscles, with a particular focus on hominoids and a suggested unifying nomenclature for the facial muscles of the Mammalia.’

173. 2010 ‘How many landmarks? Assessing the classification accuracy of Pan lower molars using a geometric morphometric analysis of the occlusal basin as seen at the enamel-dentine junction.’

174. ‘Hominini’

175. ‘Systematics, Taxonomy, and Phylogenetics: Ordering Life, Past and Present’

176. ‘Reconstructing Human Evolution: Achievements, Challenges and Opportunities’

177. 2011 ‘The evolutionary context of the first hominins’

178. ‘Soft-tissue anatomy of the primates: phylogenetic analyses based on the muscles of the head, neck, pectoral region and upper limb, with notes on the evolution of these muscles.’

179. ‘Expression of myosin heavy chain isoforms in the supraspinatus muscle of different primate species: implications for the study of the adaptation of primate shoulder muscles to different locomotor modes’

180. ‘Evolution in the genus Homo’

181. ‘The Omo-Turkana Basin Fossil Hominins and Their Contribution to Our Understanding of Human Evolution in Africa’

182. 2012 ‘Evidence for the production of speech in the fossil record’
‘Microwear, mechanics and the feeding adaptations of Australopithecus africanus’

‘Violation of Dollo's law: evidence of muscle reversions in primate phylogeny and their implications for the understanding of the ontogeny, evolution and anatomical variations of modern humans’

‘Molar development and crown areas in early Australopithecus’

‘Evolution and homologies of modern human hand and forearm muscles: thumb movements and tool use’

‘Reconstructing the diet of an extinct hominin taxon: the role of extant primate models’

‘Comparative anatomy of the lower limb muscles of hominoids: attachments, relative weights, innervation and functional morphology’

‘A major reason to study muscle anatomy: Myology as a tool for evolutionary, developmental, and systematic biology’

‘Evolution of hominin postcanine macromorphology: A comparative meta-analysis’

‘First comparative study of morphological and molecular evolutionary rates within primates: implications for the tempo and mode of primate and human evolution’.

‘Paranthropus’

‘The broader evolutionary lessons to be learned from a comparative and phylogenetic analysis of primate muscle morphology’

‘Stable isotope-based diet reconstructions of Turkana Basin hominins’
Sponheimer, M., Alemseged, Z., Cerling, T.E., Grine, F.E., Kimbel, W.H., Leakey, M.G.,
Manthi, F.K., Reed, K., Wood, B.A., and Wynn, J.G.
doi:10.1073/pnas.1222568110/-/DC Supplemental.

Reply to Fontes-Villalba et al.: ‘On a reluctance to conjecture about animal food consumption.’
Sponheimer, M., Alemseged, Z., Cerling, T.E., Grine, F.E., Kimbel, W.H., Leakey, M.G.,
Lee-Thorp, J.A., Manthi, F.K., Reed, K.E., Wood, B.A., Wynn, J.G.

196. ‘Diet and dietary adaptations in early hominins: the hard food perspective.’
Strait, D.S., Constantino, P., Lucas, P.W., Richmond, B.G., Spencer, M.A., DeChow, P.C., Ross, C.F.,
Chalk, J., Smith, A.L., Smith, L.C., Wood, S., Berthaume, M., Benazzi, S., Dzialo, C.,
Tamvada, K., and Ledogar, J.A.
doi: 10.1002/ajpa.22285

197. ‘Variation in mandibular postcanine dental morphology and hominin species representation in Member 4, Sterkfontein, South Africa.’
Grine, Frederick E., Delanty Marcia M., and Wood, Bernard A.

198. ‘Evaluating the use of pairwise dissimilarity metrics in paleoanthropology.’
Gordon, Adam D. and Wood, Bernard.
doi: 10.1016/j.jhevol.2013.08.002

199. ‘Great Ape Skeletal Collections: Making the Most of Scarce and Irreplaceable Resources in the Digital Age.’
Gordon, Adam D., Marcus, Emily* and Wood, Bernard.
doi: 10.1002/ajpa.22391

200. 2014 ‘First Early Hominin from Central Africa (Ishango, Democratic Republic of Congo)’
Crevecoeur, I., Skinner, M.M., Bailey, S.E., Gunz, P., Bortoluzzi, S., Brooks, A.S.,
doi:10.1371/journal.pone.0084652

201. ‘Regional diversity patterns in African bovids, hyaenids, and felids during the past 3 million years: the role of taphonomic bias and implications for the evolution of Paranthropus.’
Patterson, D.B.*, Faith, J.T.*, Bobe, R., and Wood, B.
Quaternary Science Reviews, 96: 9-22.
doi: 10.1016/j.quascirev.2013.11.011

202. ‘Unreasonable expectations.’
Wood, Bernard.
Antiquity, 88 (341): 917-918.
doi: http://dx.doi.org/10.1017/S0003598X00050791
203. 2015  ‘Modeling the dental development of fossil hominins through the inhibitory cascade.’
Schroer, Kes* and Wood, Bernard
doi: 10.1111/joa.12264

204.  ‘Defining the genus Homo.’
Collard, M. and Wood, B.

205.  ‘Human Evolution.’
Wood, Bernard.
doi: 10.1093/OBO/9780199941728-0050

206.  ‘Macroevolution in and around the hominin clade.’
Wood, Bernard and Grabowski, M.
DOI 10.1007/978-3-319-15045-1

207.  ‘Apes in the Anthropocene: flexibility and survival.’
doi.org/10.1016/j.tree.2015.02.002

208.  ‘The role of character displacement in the molarization of hominin mandibular premolars.’
Schroer, Kes* and Wood, Bernard
DOI: 10.1111/evo.12672

209.  ‘Humanity’s Origins.’
Wood, Bernard
ISBN 978-0-268-04147

210.  ‘Humanity’s Origins.’
Wood, Bernard
Ciência & Ambiente, 48 (January-June 2014*): 67-77.
(*published in 2015)

211.  ‘Testicular receptor 2, Nr2c1, is associated with stem cells in the developing olfactory epithelium and other cranial sensory and skeletal structures.’
Baker, J.L.*, Wood, B., Karpinski, B.A., LaMantia, AS, Maynard, T.M.
DOI: 10.1016/j.gep.2015.12.002
212. 2016 ‘Hominin Taxic Diversity: Fact or Fantasy?’
Wood, Bernard and Boyle, Eve K.*
DOI: 10.1002/ajpa.22902

213. ‘Origin, development and evolution of primate muscles in the context of anatomical variations and anomalies in modern humans.’
Diogo, R. and Wood, B.
In: Evolutionary Developmental Anthropology: A Post-Genomic Approach to Understanding Primate and Human Evolution.

214. ‘Functional Divergence of NR2C1 (TR2) as a Modulator of Pluripotentiality During Hominid Evolution.’
DOI: 10.1534/genetics.115.183889

Bernard Wood.
Micromega, 6: 16-26.

216. ‘Hominins: Context, Origins, and Taxic Diversity.’
Wood, Bernard and Boyle, Eve*.
In: On Human Nature.
ISBN : 9780124201903

217. 2017 ‘Human evolutionary history’
Boyle, E.K.* and Wood, Bernard

218. ‘Brain enlargement and dental reduction were not linked in hominin evolution.’
DOI:10.1073/pnas.1608798114

219. ‘The principles and practice of human evolution research: Are we asking questions that can be answered?’
Smith, Richard J. and Wood, Bernard
Online publication complete: 11-JAN-2017
DOI: 10.1016/j.crpv.2016.11.005
220. 2017  ‘Paranthropus: Where do things stand?’
Wood, Bernard and Schroer, Kes*.
In: Human Paleontology and Prehistory.
Eds. Marom, A. and Hovers, E., pp. 95-107,
Vertebrate Paleobiology and Paleoanthropology, Springer
DOI: 10.1007/978-3-319-46646-0_8

221. ‘First detailed anatomy study of bonobos reveals higher rates of human evolution and
bonobos as best model for our common ancestor.’
Diogo, R., Molnar, J.L. and Wood, B.
Scientific Reports 7: 608.
DOI:10.1038/s41598-017-00548-3

222. ‘Sagittal crest formation in great apes and gibbons.’
Balolia, Katharine L., Soligo, Christophe, and Wood, Bernard.
J. Anat. 230: 820-832
DOI: 10.1111/joa.12609

223. ‘Ecosystem evolution and hominin paleobiology at East Turkana, northern Kenya
between 2.0 and 1.4 Ma.’
Patterson, D.B., Braun, D.R., Behrensmeyer, A.K., Merritt, S., Žliobaite, I., Wood, B.A.,
Fortelius, M., Bobe, R.
DOI: 10.1016/j.palaeo.2017.05.001

224. ‘Landscape scale heterogeneity in the East Turkana ecosystem during the Okote Member
(1.56–1.38 Ma).’
Patterson, D.B., Braun, D.R., Behrensmeyer, A.K., Lehmann, S.B., Merritt, S., Reeves, J.S., Wood, B.A.,
Bobe, R.
doi.org/10.1016/j.jhevol.2017.06.007

225. ‘Human Origins’
Wood, Bernard
Eds. Barsanti, G. and Landi, M., pp. 76-89,
Paradigmi - Rivista di critica filosofica. 2. ISSN 1120-3404, ISSNe 2035-357X.
DOI: 10 3280/PARA 2017-002006

226. ‘Shape analysis of the basioccipital bone in Pax7-deficient mice’
Cates, J., Nevell, L., Prajapati, S.I., Nelson, L.D.,
Sci. Rep. 7, Article number: 17955
DOI:10.1038/s41598-017-18199-9

227. 2018  ‘Pattern and process in hominin brain size evolution are scale-dependent.’
Wood, Bernard A.
Proc. R. Soc. B. 285 (Issue 1873) Article number: 20172738
DOI: 10.1098/rspb.2017.2738
(Published 21 February 2018)
228. 2019  ‘Evolution of the modern human brain.’
Progress in Brain Research, Volume 237, pp. 219-250.
ISSN 0079-6123
doi: 10.1016/bs.pbr.2019.01.004

229.  ‘The evolutionary history of the human face.’
https://doi.org/10.1038/s41559-019-0865-7
Published on-line: April 15th

230.  ‘Comparative isotopic evidence from East Turkana suggests a dietary shift between early Homo and Homo erectus.’
https://doi.org/10.1038/s41559-019-0916-0

231.  ‘Human Evolution.’ (Revised and updated)
Wood, Bernard.
doi: 10.1093/OBO/9780199941728-0050

232. 2020  ‘Statistical estimates of hominin origination and extinction dates: a case study examining the Australopithecus anamensis-afarensis lineage.’
Du, A., Rowan, J., Alemseged, Z., Wood, B., and Wang, S.

In press  ‘Birth of primate comparative anatomy.’
Wood, Bernard
Evol. Anth.

‘Brain size evolution in the hominin clade.’
Archaeo. Press

‘Evolutionary diversity and adaptation in early Homo.’
Archaeo. Press

‘Mandibular corpus shape is a taxonomic indicator in extant hominids.’
In preparation  ‘Patterns of inter- and intraspecific variation within the posterior basicranium of extant hominoids.’
PEER-REVIEWED ABSTRACTS - TALKS AND POSTERS (*Student author)

   Anatomical Society of Great Britain and Ireland.

   Anatomical Society of Great Britain and Ireland.

   Anatomical Society of Great Britain and Ireland.


7. 1979 ‘Sex differences in the primate pelvis.’
   Anatomical Society of Great Britain and Ireland.

8. 1979 ‘Allometry, and dental proportions in fossil hominids.’
   Anatomical Society of Great Britain and Ireland.

9. 1979 ‘Venous anatomy of the lower limb in macaca monkeys.’
   British Association of Clinical Anatomists.

     American Association of Physical Anthropologists, San Francisco, April.
Anatomical Society of Great Britain and Ireland.

Anatomical Society of Great Britain and Ireland.

16. 1981 ‘Comparative anatomy of the hind-limb venous system in primates.’
6th European Anatomical Congress, Hamburg.

17. 1982 ‘Remains attributable to Homo erectus from Koobi Fora, and their relationship to
fossil evidence from sites elsewhere in Africa and Europe.’
Wood, B.A. First International Congress of Human Palaeontology, Nice.

18. 1983 ‘The pattern of hind-limb venous drainage in pongids compared to that in man
and monkey.’ Anatomical Society of Great Britain and Ireland.

19. 1983 ‘Preliminary observations on enamel structure and thickness in fossil hominids.’
International Society for Dental Research.

20. 1985 ‘Sexual dimorphism in the hominid fossil record.’ Symposium: Society for the
Study of Human Biology.

21. 1985 ‘Australopithecines: grade or clade?’
Symposium, Anatomical Society of Great Britain and Ireland.

Britain and Ireland.

23. 1985 ‘Character states and their role in phylogenetic analysis.’ XII International
Anatomical Congress, London.

Anatomical Society of Great Britain and Ireland.

25. 1985 ‘Mandibular premolar root form and evolution in the Hominoidea.’ Anatomical
Society of Great Britain and Ireland.

26. 1986 ‘Affinities and adaptations of the ‘robust’ australopithecines.’ The Longest
Record: The Human Career in Africa. Conference in Honor of
J. Desmond Clark, Berkeley.

27. 1987 ‘Are the ‘robust’ australopithecines a monophyletic group?’ Primate
Society of Great Britain.

29.  ‘Variations within Homo habilis.’


33.  1988  ‘Venous anatomy of the human forelimb.’


36.  1989  ‘Variation in the Lufeng hominoid dental remains.’


41. ‘Early Homo: How many species?’ AAPA, Milwaukee.  


43. ‘Taxonomy and evolutionary relationships of Homo erectus.’ Frankfurt, December.  


45. 1992 ‘Homo erectus: grade, clade or neither?’ AAPA, Las Vegas.  


Abstract: Wood, B.A. and Wood, C.W.*


49. ‘Paranthropus boisei - an example of evolutionary stasis?’  

50. ‘A realistic strategy for estimating hominid body weights’. Four million years of hominid evolution in Africa: an international congress in Honour of Mary Leakey, Arusha, August.  


53. ‘Paranthropus boisei - an example of evolutionary stasis.’  
54. 1994 ‘Cranial variables predict hominid body mass.’

55. 1995 ‘Evolutionary relationships between gibbon subgenera.’

56. ‘The use of articular surface shape to match the components of the H. habilis (OH 8/35) talocrural joint.’

57. ‘An early hominid ulna (OH 36) from Bed II, Olduvai Gorge.’ American Association of Physical Anthropology, Oakland.

58. ‘Functional and taxonomic implications of early hominid mandibular scaling.’
American Association of Physical Anthropology, Oakland.

59. ‘Interpreting the evolutionary history of Plio-Pleistocene African hominids.’

60. ‘Grades and the evolutionary history of early African hominids.’

61. 1996 ‘The OH 8 first metatarsal.’

62. ‘Mechanisms underlying the delayed eruption of the modern human dentition.’

63. ‘Early hominid mandibular scaling relationships’

64. ‘Early hominid species and their adaptations’

65. ‘Evolutionary relationships between gibbon subgenera inferred from DNA sequence data.’

66. 1997 ‘The sex of AL 288-1’

68. 1998  ‘Comparative study of East African Pliocene omnivore dental microwear.’

69. ‘Cladistics and the estimation of hominid phylogeny.’

70. ‘Masticatory characters and primate phylogeny estimation.’

71. ‘Assessing taxonomic variability in hominoids.’

72. ‘Homo: an alternative definition.’

73. ‘Stature estimates for KNM-WT 15000.’

74. ‘Can hominine body shapes be explained as adaptations to mechanical demands?’

75. ‘Human evolution: species diversity and relationships.’

76. ‘A test of the reliability of hominid phylogeny reconstruction.’

77. ‘Grade shifts in the evolution of higher primates.’

78. 1999  ‘Stratigraphic consistency in hominin phylogeny.’

79. ‘Assessing the taxonomic significance of mandibular variation in Paranthropus boisei.’

80. ‘Biogeographic implications of early hominid phylogeny.’
81. 1999  ‘Patterns of craniofacial variability in living primates and *P. boisei*.’

82.  ‘Homoplasy and the phylogenetic relationships of *Homo rudolfensis*.’

83.  ‘Homoplasy and homoiology in human evolution.’

84.  ‘Something to chew on: facial function in *Paranthropus* and its implications for early hominid phylogeny.’

85.  ‘Homoplasy and hominin phylogeny.’

86.  ‘Phenotypic Plasticity in Hominin Phylogenetics.’

87.  ‘Old and new paradigms in the study of human evolution.’

88.  2000  ‘The Human Genus.’

89.  ‘Relative reliability of bones, teeth and soft-tissues in higher primate phylogenetics.’

90.  ‘*Paranthropus boisei*: a derived eurytope?’

91.  ‘Early hominin limb proportions: Is ‘Lucy’ significantly different from her ‘Children’?’

92.  ‘Does the hominin mandibular corpus have any taxonomic utility?’

93.  ‘Human evolution and “Progress”: a paleoanthropologists’ perspective.’

94.  ‘The Human Genus.’
95. 2001 ‘Phylogenetic utility of higher primate postcranial morphology.’

96. ‘Finite element analysis of a partial macaque skull.’

97. ‘Are the P4s of Paranthropus uniquely molarized?’

98. ‘Rethinking early hominin adaptive strategies.’

99. ‘Macroevolutionary trends in human evolution.’

100. ‘Taxonomy and phylogeny of hominid species: the contribution of dental microstructure.’

101. ‘Homoplasy and the early hominid masticatory system: inferences from analyses of living hominoids and papionins.’

102. ‘Human evolution through the ages.’

103. ‘Human evolution: grades and clades.’

104. 2002 ‘Comparative context of radicular variation on fossil hominins: methodology and variation in premolar root form.’

105. ‘Incongruence and homoplasy in the mammalian skeleton.’

106. 2003 ‘Contribution of characters of the central nervous system to hominoid phylogenetics.’

107. ‘Cranial base sexual dimorphism: size and shape and their taxonomic significance.’

109. 2004  ‘Paranthropus paleobiology: a review.’

110.  ‘Are early hominin hypodigms equally biased samples?’

111.  ‘An evaluation of the coefficient of variation and average taxonomic distance to detect multiple taxa in extant hominoid samples.’

Wood, B. ‘Symposium: The Rise and Fall of Homo erectus’ La Jolla CA.

113.  2005  ‘Root morphology of the anterior dentition of extant higher primates.’

114.  ‘Patterns of hard tissue sexual dimorphism within the hominin clade.’

115.  ‘The evolution of premolar and molar crown morphology within the hominin clade.’


117.  ‘Interpreting human evolutionary history: what can we infer from the skeleton and behaviour.’

118.  2006  ‘Human evolution: philosophies, prejudices and preconceptions.’

119.  ‘Principles and options for defining the genus Homo.’

120.  ‘When does the genus Homo begin and how can we know?’
121. 2006  ‘Where does the genus *Homo* begin, and how would we know?’  

122.  ‘Evolutionary relationships of modern humans and apes.’  

123.  2007  ‘The hominin fossil record: taxa, grades, and clades.’  

124.  ‘Hominin life history.’  

125.  ‘Structural and functional trends in mandible and tooth morphology within the hominin clade.’  


129.  ‘Human Origins Database.’  

130.  ‘*Paranthropus boisei*: fifty years of evidence and analysis’  

131.  ‘Human Origins Database’  
132. 2007 ‘Which postcranial fossils belong to *Paranthropus boisei* vs. early *Homo*?’

133. ‘Palaeoanthropology: Then and Now’
Primate Society of Great Britain: Celebrating 40 years of British Primatology.

134. 2008 ‘How enamel form may provide key information on the properties of fallback foods.’
Annual Meeting of the American Association of Physical Anthropologists, Columbus. April, 2008.

135. ‘Comparative anatomy, phylogeny and evolution of the head and neck musculature of hominids: a new insight’
Annual Meeting of the American Association of Physical Anthropologists, Columbus. April, 2008.

136. ‘Evolution of M¹ cusp proportions in the genus *Homo*.’
Annual Meeting of the American Association of Physical Anthropologists, Columbus. April, 2008.

137. ‘Distinct patterns of protostylid expression at the enamel-dentine junction of *Paranthropus robustus* and *Australopithecus africanus* lower molars.’
Annual Meeting of the American Association of Physical Anthropologists, Columbus. April, 2008.

138. ‘Hominin cranial base evolution.’
Annual Meeting of the American Association of Physical Anthropologists, Columbus. April, 2008.

139. ‘Discrimination of species and subspecies of *Pan* using the EDJ morphology of lower molars.’
14th International Symposium on Dental Morphology, Greifswald, August, 2008.

140. 2009 ‘Comparative anatomy and evolution of the pectoral and forelimb musculature of primates: a new insight.’

141. ‘Paleoanthropology and cultural anthropology: could and should the twain meet?’


144.  ‘*Paranthropus* monophyly: a “done deal”, or a hypothesis ripe for testing?’ *Wood, B.* Turkana Basin Institute Workshop, Turkwell, Kenya.


| 152. 2011 | ‘Mandibular premolar molarization: a platyrrhine comparative model.’
| 153.       | ‘The role of comparative databases in paleoanthropology research.’
| 154.       | ‘Crown and cusp base areas in early *Australopithecus.*’
| 155.       | ‘Mandibular P4 morphology among Plio-Pleistocene hominins: taxonomic implications and morphological trends.’
| 156.       | ‘Paranthropus and *Homo* mandibular premolar morphology: a comparative model in sympatric primates’
| 157. 2012  | ‘A comparative genomic investigation of the role for the NMDA receptor gene *GRIN3A* in synaptic plasticity.’
| 158.       | ‘Comparative anatomy, evolutionary trends and the myth of human morphological complexity: empirical studies reveal that modern humans have fewer muscles than most primate and non-primate mammals.’
| 160.       | ‘Mandibular premolar morphology is correlated with dietary toughness in sympatric callitrichids.’
| 161.       | ‘Revisiting “Zinj”: Premolar morphology supports multiple robust australopith genera’
| 162.       | ‘The molecular evolution of NMDA receptors in the human lineage.’
| 163. 2013  | ‘Mandibular premolar morphology is correlated with mechanically challenging diets in sympatric primates.’
164. 2013  ‘Sympatric primate populations: comparative models for evaluating dental morphological variation in early hominins.’
Proceedings of the 22nd Annual Meeting of the Paleoanthropology Society. 2013. Apr 2-3; Honolulu, HI. (PRESENTATION)

165.  ‘The origin of Homo. What are we looking for?’
I BAM, I Bioanthropological Meeting, University of Coimbra, Portugal. May 31st – June 1st.

166.  ‘The origin of Homo. What are we looking for?’
Wood, Bernard.
CBA/Center for Environmental Biology and the Lisbon Applied Evolutionary Epistemology Laboratory. June 3rd. (PRESENTATION)

167.  ‘When physicians were polymaths.’
Wood, Bernard.
Royal College of Physicians, London, UK. June, 24th. (PRESENTATION)

168.  ‘Characterizing the expression of NR2C1 in neural progenitors.’
Abstract submitted for the 2013 Neuroscience Meeting in San Diego, CA. (POSTER)

169.  ‘A comparison of the fossil evidence of three mammalian families from East and southern Africa over the past 3 million years: the effects of sampling bias’
Patterson, D.B., Faith, J.T., Bobe, R., Wood, B.
Abstract submitted for the 2013 SVP Meeting in Los Angeles, CA. (PRESENTATION)

170. 2014  ‘Natural selection in primates on genes involved in the growth and development of the masticatory apparatus.’
Cell Symposium: Evolution of Modern Humans – from Bones to Genomes, March 16th- 18th, Sitges

171.  ‘Quantifying the tempo and mode of hominin cranial capacity evolution including taking into account dating and measurement error.’
Proceedings of the 23rd Annual Meeting of the Paleoanthropology Society. Apr 7-8; Calgary, CA. (PRESENTATION)

172.  ‘Did Homo and Paranthropus differ in ecology? Evidence from East Turkana, Kenya’
Proceedings of the 23rd Annual Meeting of the Paleoanthropology Society. Apr 7-8; Calgary, CA. (PRESENTATION)

173.  ‘Learning to live with missing data.’
Proceedings of the 23rd Annual Meeting of the Paleoanthropology Society. Apr 7-8; Calgary, CA. (PRESENTATION)
Abstract: Wood, B. PaleoAnthropology: A??.
174. 2014 ‘Dental evolution: Patterns of sequence evolution within the primate lineage suggestive of positive selection on genes involved in tooth growth and morphology.’

175. ‘Evolutionary developmental variation in primate musculature and implications for human medicine.’

176. ‘Does hominid dental microstructure carry a phylogenetic signal?’

177. ‘The genetics of hominin cranial base integration and evolution.’

178. ‘Regional diversity patterns in African bovids, hyaenids, and felids during the past 3 million years: the role of taphonomic bias and implications for the evolution of Paranthropus.’

179. ‘Homo habilis: fifty years of fossil evidence and analysis.’
Wood, Bernard.
Abstract: Wood, B. In Les hominides du Pliocene et du Pleistocene Inferieur et Moyen dans le monde. La Place de l’homme de Tautavel, un Homo heidelbergensis, il y a 450 000 ans. p. 28. (PRESENTATION)

180. ‘First early hominin from the Western Rift Valley (Ishango, Democratic Republic of Congo.’

181. ‘Stable isotopic and morphological evidence for dietary evolution in the mammalian community of East Turkana, Northern Kenya, between 2 and 1.4 million years ago with particular emphasis on three large-bodied primates.’

182. ‘Broader evolutionary lessons learned from a comparative and phylogenetic analysis of primate muscles: homoplasy, reversions, evolutionary rates, and the myth of human complexity.’

183. ‘Mandibular premolar morphology: an indicator of community ecology, dietary competition, and evolutionary divergence.’
184. 2015  ‘A method for assigning sex based on the size and shape of the upper and mid-face.

Proceedings of the 25th Annual Meeting of the Paleoanthropology Society. Apr 12-13; Atlanta, GA. (PRESENTATION)

186.  ‘Hominin behavioral landscapes: merging stable isotopes, zooarchaeology and ecometrics for insights into hominin ecology at East Turkana, northern Kenya.’

187.  ‘Patterns of variation in the hominoid appendicular skeleton: implications for fossil hominins.’

188.  ‘Models for, and predictions about, the head, neck, pectoral and upper limb musculature of the last common ancestor of hominins, and notes on the myth of human morphological complexity.’

189.  ‘Hominin Taxic Diversity: Fact or Fantasy?’

190.  ‘Tales from the teeth: Investigating the potential of dental microstructure for phylogeny reconstruction.’

191.  ‘Lineage-specific patterns of brain expansion and dental reduction in hominins.’

192.  ‘Patterns of variation within the face of early hominins: Do we have a comparative context?’
Wood, Bernard
The Evolutionary History of the Human Face Fundación Ramón Areces, Madrid, September 13th, 2016 (PRESENTATION)

193.  ‘Sagittal crest development, expression and allometry in great apes and gibbons’
Balolia, K., Soligo, C. and Wood, B.
Australian Society of Human Biology (PRESENTATION)
194. 2017  ‘A taxonomic scale-explicit analysis of brain size evolution in the hominin clade.’

195. ‘Ancestral state reconstruction of dental development in Miocene fossil taxa.’

196. ‘Premolar root and canal variation in the hominin clade.’

197. ‘Bonobo striated muscle anatomy suggests relative stasis and mosaic evolution with panins, and supports bonobos as the most appropriate extant model for the common ancestor of panins and hominins.’

198. ‘Ancestral state reconstructions of dental development in Miocene fossil taxa.’

199. ‘Patterns of metameric variation in premolar root morphology in fossil hominins.’

200. ‘Human Evolution: A Realistic Perspective?.’
Abstract: Wood, Bernard and Boyle, Eve, Symposium to mark 50th Anniversary PSGB. Primate Eye 123: 32. (PRESENTATION)

201. 2018  ‘Estimating the timing of and placing confidence intervals on the origination and extinction of the Australopithecus anamensis-afarensis lineage.
Proceedings of the 26th Annual Meeting of the Paleoanthropology Society. Apr 10-11; Austin, TX. (PRESENTATION)

202. ‘Species recognition in the hominin fossil record.’

203. ‘A Realistic View of the Human Fossil Record.’

204. ‘Particle Based Modeling (PBM) Geometric Morphometric Analysis of the basioccipital bone in Pax7-deficient mice.’
<table>
<thead>
<tr>
<th>Year</th>
<th>Article Title</th>
<th>Author</th>
<th>Journal/Book</th>
<th>Page(s)</th>
</tr>
</thead>
</table>
18. 1992  ‘Evolution of the australopithecines.’ 
   Wood, B.A. In: The Cambridge Encyclopaedia of Human Evolution, 

19. 1993  ‘Four legs good, two legs better.’  

20. 1993  ‘Rift on the record.’  

21. 1993  ‘Four million years of hominid evolution in Africa.’ 

22. 1994  ‘The oldest hominid yet.’ 

23. 1995  ‘L’Australopithèque ramidus est-il notre tout Premier Ancêtre?’ 

24. 1995  ‘Human origins - a family feud.’ 

25. 1995  ‘Out of Africa and into Asia.’ 

26. 1995  ‘Australopithecus goes west.’ 

27. 1995  ‘Primate and human evolution’ 

28. 1995  ‘Leaps and bounds.’ 

29. 1996  ‘Early hominid evolution in Africa.’ 

30. 1997  ‘Human evolution.’ 

31. 1997  ‘Mary Leakey, 1913-1996’ 

32. 1997  ‘The oldest whodunnit in the world’ 

33. 1997  ‘Koobi Fora.’ 

34. 1998  ‘Ecce Homo - Behold Mankind.’ 

35. 1998  ‘Investigating human evolutionary history.’ 
36. 1998  ‘Howell: Lifetime achievement award’


38. ‘We are what we ate.’

39. ‘Homoplasy: Foe and Friend?’

40. ‘Hominid Evolution’

41. ‘Homo ergaster’

42. 2000  ‘Homo habilis’

43. ‘Homo rudolfensis’

44. ‘Homo erectus’

45. ‘Homo habilis’

46. 2001  ‘Homo neanderthalensis’

47. ‘Hominid Evolution.’

48. ‘Définition du genre Homo.’

49. 2002  ‘Hominid revelations from Chad.’
50. 2002 ‘Who are we?  

51. ‘Hominid radiations: early.’  

52. 2003 ‘Hominids’.  

53. 2005 ‘Foreword: Several Smooth Pebbles’  

54. 2006 ‘History is philosophy learned from examples.’  

55. ‘A precious little bundle.’  


57. ‘Obituary: Francis Clark Howell (1925-2007)  

58. ‘Obituary: Eldred Wright Walls (1925-2007)’.  

59. ‘Où le genre *Homo* commence-t-il?’.  
**Wood, Bernard A.** Les Dossiers de la Recherche. 32: 39-42.

60. ‘The hunt for our earliest human ancestors.’  

61. ‘Sir Wilfrid Le Gros Clark. The making of a paleoanthropologist.’  

62. 2009 ‘The Human Fossil Record: Challenges and Opportunities’  

63. 2011 ‘Did early *Homo* migrate “out of” or “in to” Africa?’  

64. ‘A very particular kind of archaeologist.’  
65. 2012 ‘Antenati e Parenti’

66. ‘Obituary: Phillip Vallentine Tobias (1925-2012)’

67. ‘Facing up to complexity’

68. ‘Obituary: Phillip Vallentine Tobias (1925-2012)’

69. 2013 ‘Gritting their teeth’

70. ‘Four-Field Anthropology: A Perfect Union or a Failed State?’

71. ‘Phillip Vallentine Tobias (1925–2012)’
   doi: 10.1111/joan.12057

72. 2014 ‘Shared morphology does not always mean shared recent evolutionary history’
   Wood, Bernard

73. ‘Fifty years after Homo habilis’
   Wood, Bernard
   Nature 508: 31-33.

74. ‘Welcome to the family’
   Wood, Bernard
   Scientific American September pp. 43-47.

    (ISSN 1936-1513)

75. 2015 ‘Bernard Wood’
   Wood, Bernard

76. ‘Hominin fossils’
   Wood, Bernard
   In J. Trefil (Ed.), Discoveries in Modern Science (Vol. 2, pp. 495-501). Farmington Hills,
   MI: Macmillan Reference USA.

77. ‘Zero Tolerance. Period.’
   Wood, Bernard
   Science 486 (No 6260): 487.
78. 2016  ‘John William Simmons Harris (1926–2013)’
    Wood, Bernard
    Journal of Anatomy 228: 716-717.
doi: 10.1111/joa.12458

79.  ‘Foreword’
    Wood, Bernard
    In C. Cunningham, L. Scheuer and S. Black (Eds.), Developmental Juvenile Osteology
    ISBN: 978-0-12-382106-5

80. 2017  ‘Origins(s) of Modern Humans’
    Wood, Bernard
    Current Biology 27: R767-9.
doi.org/10.1016/j.cub.2017.06.052

81.  ‘Frank Brown (1943-2017)’
    Wood, Bernard
    Nature 552: 32.
doi: 10.1038/d41586-017-07832-2

82.  ‘PSGB 50th Anniversary: Reflections of Past-Presidents’
    Wood, Bernard
    Primate Eye 123: 11-12.

83.  2018  ‘The origin of ‘us’: what we know so far about where we humans come from’
    Wood, Bernard and Michael Westaway
    Conversation
    http://theconversation.com/the-origin-of-us-what-we-know-so-far-about-where-we-humans-come-from-54385

84.  ‘Feibel, Craig. S. and Wood, Bernard
    https://doi.org/10.1016/j.jhevol.2018.03.004

85.  ‘Colin Groves (1942–2017).’
    Wood, Bernard
    https://doi.org/10.1038/s41559-018-0554-y

86.  ‘Obituary: Michael Herbert Day (1927–2018).’
    Wood, Bernard
    https://mail.google.com/mail/u/0/#inbox/1644bfc23174c782

87.  ‘Obituary: Michael Herbert Day (1927–2018).’
    Wood, Bernard
    Primate Eye 125: 48-49.

88.  ‘Colin Groves (1942–2017).’
    Wood, Bernard and Andrews, Peter.
89. ‘Obituary: Michael Herbert Day (1927–2018).’
Wood, Bernard and Benthall, Jonathan.

90. ‘Obituary: Michael Herbert Day (1927–2018).’
Leslie C. Aiello and Wood, Bernard A.
https://doi.org/10.1016/j.jhevol.2018.08.007

91. ‘Obituary: Michael Herbert Day (1927–2018).’
Wood, Bernard A.
https://doi.org/10.1002/ajpa.23693

92. 2019 ‘Michael Day’
Wood, Bernard A.
https://doi.org/10.1007/978-3-319-51726-1_3440-1

In press ‘Hominin Phylogenetic Diversity.’
Boyle, E, Doherty, D. and Wood, Bernard
Oxford Research Encyclopedia of Anthropology
1. 1974 ‘Primate morphology.’

2. 1976 ‘Uniqueness and diversity in human evolution.’

3. 1977 ‘Primate functional morphology and evolution.’

4. ‘Catalogue of fossil hominids.’

5. 1979 ‘Grant’s dissector.’

6. 1980 ‘Contributions from Olduvai.’
   Wood, B.A. T.H.E.S., May 9th.

7. ‘Human evolution: an introduction to man’s ancestors.’

8. ‘Hands’

9. 1981 ‘Man’s place in evolution.’


11. ‘On becoming human.’

12. ‘The monkey puzzle.’

13. ‘Sexual dimorphism in Homo sapiens.’

14. ‘On monsters and marvels.’

15. 1983 ‘The fossil record and evolution.’

16. ‘A colour atlas of foot and ankle anatomy.’

17. ‘Teeth: form, function and evolution.’

18. ‘The hunger for salt.’
19. 1983  ‘New interpretations of ape and human ancestry.’

20.  ‘A textbook of regional anatomy.’
Wood, B.A. Br. J. Surg., 70: (No. 8), 512.


22.  ‘Human ecology.’

23.  ‘The order of man: a biomathematical anatomy of the primates.’

24.  ‘Problems of phylogenetic reconstruction.’

25.  ‘Clinical anatomy.’


28.  ‘The Shanidar neanderthals.’

29.  ‘Atlas of sectional anatomy.’

30. 1986  ‘The human skeleton.’

31.  ‘Oxford illustrated encyclopaedia: the natural world.’

32.  ‘Primate morphophysiology, locomotor analyses and human bipedalism.’

33.  ‘Cambridge encyclopaedia of life sciences.’

34.  ‘Atlas of human anatomy.’

35. 1987  ‘Fossils, teeth and sex: perspectives on human evolution.’

36. 1988  ‘The red ape: orang-utans and human origins.’

37.  ‘Bones of contention.’
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Author</th>
<th>Journal/Title</th>
<th>Pages</th>
</tr>
</thead>
</table>
56. 1994  ‘Our earliest ancestors.’  

57. ‘The origin of humankind.’  
**Wood, B.A.**  *New Scientist*, **144**: 50.

58. ‘*Theropithecus*: rise and fall of a primate genus.’  

59. ‘The problems of our origins.’  

60. ‘Les hommes fossiles de Saccopastore.’  

61. ‘In Search of our foremothers.’  
Review of ‘The Origin of Humankind.’  

62. 1995  ‘The helix where humans began.’  
Review of ‘The history and geography of human genes.’  

63. ‘Naming our ancestors.’  

64. 1996  ‘Apocalypse of our own making’  

65. ‘A family date with human destiny’  
**Wood, B.A.**  *Times Educational Supplement (TES)*, No. 4160, p.11.

66. ‘Perspectives in Human Biology, No. 4.’  

67. Farming for beginners  
Review of ‘The origins and spread of agriculture and pastoralism in Eurasia.’  

68. ‘Ape, man, apeman: changing views since 1600.’  
Review of ‘The Evolution of Modern Human Diversity.’  

69. Review of ‘Humans before humanity.’  

70. Review of ‘Origins of Mankind.’  

71. 1997  ‘Skulls and crossed bones.’  
Review of ‘Race and human evolution.’  

72. Review of ‘Evolution of modern human diversity’  
73. 1997  Review of ‘Life’s splendid drama.’


75. 1998  Review of ‘Dental anthropology.’

76.  ‘Slicing the dogma out of dissection.’
      Review of ‘On the fabric of the human body’ and ‘The complete visible human.’

77. 1999  Review of ‘George Cuvier, Fossil Bones and Geological Catastrophes.’

78. 2000  ‘Only Collect.’
      Review of ‘Nature’s Connections.’

79.  ‘Creatures of Chance.’
      Review of ‘The Riddled Chain.’

80.  Review of ‘Primate Anatomy: an Introduction’

81. 2001  ‘A date with Java man.’
      Review of ‘Java Man.’

82.  Review of ‘Human growth in the past: Studies from bones and teeth.’

83.  ‘Elusive Intelligence.’


85.  Review of ‘Human Paleobiology.’

86.  ‘Lessons from lemurs.’
      Review of ‘The Monkey in the Mirror.’

87. 2002  ‘Chalk and cheese.’
      Review of ‘Adventures in the Bone Trade: The race to discover human ancestors in Ethiopia’s Afar Depression’ and ‘In the Footsteps of Eve: The mystery of Human Origins.’
88. 2002 Review of ‘Primate Taxonomy.’

89. 2002 ‘So near, but yet so far.’
Review of ‘Human Evolution Through Developmental Change.’

90. 2004 ‘Exploring Human Origins.’

91. ‘Human Evolution’
Review of ‘Principles of Human Evolution.’

92. Review of ‘The Skull of Australopithecus afarensis.’
Wood, B. Journal of Anthropological Research, 60: 561-562


94. ‘Deep.’
Review of ‘The Hunt for the Dawn Monkey’
Wood, B. Geotimes, 50(9): 47.

95. Review of ‘The Human Strategy:’

96. Review of ‘Patterns of Growth and Development in the Genus Homo’

97. 2008 ‘Paleoanthropology today?’
Review of the ‘Handbook of Paleoanthropology.’

98. Review of ‘Neanderthals revisited: New approaches and perspectives.’


100. Review of ‘Homo erectus Pleistocene evidence from the Middle Awash, Ethiopia’ (eds. W. Henry Gilbert and Berhane Asfaw) and ‘Étude Anthropologique du Squelette du Paléolithique Supérieur de Nazlet Khatar 2 (Égypte)’ by Isabelle Crevecoeur.


DOI: 10.26613/esic.1.1.30

53
103. 2017 ‘Chalk and cheese 2.0’
Review of ‘The Metaphysics of Apes: Negotiating the Animal-Human Boundary’
doi.org/10.1016/j.jhevol.2017.08.010

104. 2018 ‘You are what you eat’
ISBN: 978-1-400884-759

105. ‘The complex history of human origins research in South Africa’
Early view: March 3rd
DOI: 10.1002/evan.21580

106. ‘DNA ‘lives’ to tell the tale.’

107. Review of ‘Quarks to Culture: How We Came to Be.’ By Tyler Volk.
DOI: 10.26613/esic/2.2.109

108. 2019 ‘How Neanderthal minds took flight’
Review of ‘The Smart Neanderthal.’ By Clive Finlayson (2019) OUP.

DOI: 10.26613/esic/3.1.132
In press

‘Human Behavior Writ Large.’

**Wood, Bernard.** *Evolutionary Studies in Imaginative Culture*
ELECTRONIC DATABASES

    Dean, C. and **Wood, B.A.** In: Digital Archives of Human Paleobiology. Eds. L.
    Bondioli and R. Macchiarelli, CD-ROM. Museo Nazionale Preistorico Etnografico “L.
    Pigorini”, Rome.

2. 2008  ‘Human Origins Database.’

LECTURES AND INTERVIEWS ON-LINE


2017

2018

2019
JOURNALISM

1. 2006 ‘What will be the biggest breakthroughs in the next 50 years?’
   

PUBLIC UNDERSTANDING OF SCIENCE

Interviews for national and regional radio, television and news articles in 'Science News', 'Science' and 'Nature,' and extensive collaborations with science reporters at times when newsworthy event are occurring in paleoanthropology.